Course Catalog 2023/24

Title of Program : Bachelor's Degree in Mathematics, Specialization in

Data Science for Artificial Intelligence

Program Code	6-L-MATH
Level	Undergraduate
Credits and	198 ECTS credits taken over 6semesters
Duration	
Delivery Language	English

Academic Calendar

July	y 20	23				
М 0	Ти	W e	Th	Fr	Sa	Su
					1	2
3	4	5	6	7	8	9
1	1	1	1	1	1	1
0	1	2	3	4	5	6
1	1	1	2	2	2	2
7	8	9	0	1	2	3
2	2	2	2	2	2	3
4	5	6	7	8	9	0
3						
1						

August 2023

М 0	Ти	W e	Th	Fr	Sa	Su
	1	2	3	4	5	6
7	0	0	1	1	1	1
/	8	9	0	1	2	3
1	1	1	1	1	1	2
4	5	6	7	8	9	0
2	2	2	2	2	2	2
1	2	3	4	5	6	7
2	2	3	3			
8	9	0	1			

September 2023

М 0	Ти	W e	Th	Fr	Sa	Su
				1	2	3
1	5	6	7	0	0	1
T	5	9	/	0	9	0
1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	1	2	2	2	2	2
8	9	0	1	2	3	4
2	2	2	2	2	3	
5	6	7	8	9	0	

October 2023

Oc	October 2023					November 2023							
М 0	Ти	W e	Th	Fr	Sa	Su	М 0	Ти	W e	Th	Fr	Sa	Su
						1			1	2	3	4	5
2	Z	Л	5	6	7	0	6	7	0	a	1	1	1
2	9	Т	5	0	/	0	0	/	0	-1	0	1	2
9	1	1	1	1	1	1	1	1	1	1	1	1	1

December 2023

М 0	Ти	W e	Th	Fr	Sa	Su
				1	2	3
4	5	6	7	8	9	1 0
1	1	1	1	1	1	1

	0	1	2	3	4	5
1	1	1	1	2	2	2
6	7	8	9	0	1	2
2	2	2	2	2	2	2
3	4	5	6	7	8	9
3	3					
0	1					

3	4	5	6	7	8	9
2	2	2	2	2	2	2
0	1	2	3	4	5	6
2	2	2	3			
7	8	9	0			

1	2	3	4	5	6	7
1	1	2	2	2	2	2
8	9	0	1	2	3	4
2	2	2	2	2	3	3
5	6	7	8	9	0	1

January 2024

April 2024

W

Th

Fr

Sa Su

7 8

Μ

М	τ.,	W	Th	Eic	Sa	<i>c</i>
0	ги	е	ΓM	Fr	30	30
1	2	3	4	5	6	7
0	0	1	1	1	1	1
0	9	0	1	2	3	4
1	1	1	1	1	2	2
5	6	7	8	9	0	1
2	2	2	2	2	2	2
2	3	4	5	6	7	8
2	3	3				
9	0	1				

February 2024										
М 0	Ти	W e	Th	Fr	Sa	Su				
			1	2	3	4				
5	6	7	0	0	1	1				
5	0	/	٥	5 9	0	1				
1	1	1	1	1	1	1				
2	3	4	5	6	7	8				
1	2	2	2	2	2	2				
9	0	1	2	3	4	5				
2	2	2	2							
6	7	8	9							

May 2024

	-	-					
,	М 0	Tu	W e	Th	Fr	Sa	Su
			1	2	3	4	5
	/	7	0	0	1	1	1
	0	/	8	8 9	0	1	2
	1	1	1	1	1	1	1
	3	4	5	6	7	8	9
	2	2	2	2	2	2	2
(0	1	2	3	4	5	6
	2	2	2	3	3		
	7	8	9	0	1		

March 2024

M o	Ти	W e	Th	Fr	Sa	Su
				1	2	3
1	_	_	7	0	0	1
4	56789	9	0			
1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	1	2	2	2	2	2
8	9	0	1	2	3	4
2	2	2	2	2	3	3
5	6	7	8	9	0	1

June 2024

М	Ти	W	Th	Fr	Sa	Su
0		е				
					1	2
3	4	5	6	7	8	9
1	1	1	1	1	1	1
0	1	2	3	4	5	6
1	1	1	2	2	2	2
7	8	9	0	1	2	3
2	2	2	2	2	2	3
4	5	6	7	8	9	0

Program Overview

The goals of the Bachelor in Mathematics, Specialization in Data Science for Artificial Intelligence are to:

- Provide students with an in-depth exposure to diverse areas of mathematics, such as Analysis, Algebra, Discrete Mathematics, Probability and Statistics.
- Provide students with an in-depth exposure to the theoretical foundations and the operational techniques of Data Science and Machine Learning, as well as to the main modeling tools/digital information environments which are typically used in those fields.
- Develop strong critical thinking skills, which coupled with the technical competencies acquired in the Bachelor, guarantees advanced analysis, modelling and problem-solving capabilities needed in Business and industrial setups.
- Provide students with the necessary background to further pursue their studies in Mathematics and/or Data Science and Machine Learning, should they wish to do so.

PLO 1	Demonstrate knowledge and understanding of diverse areas in
	mathematics, such as
	Analysis, Algebra, Discrete Mathematics,
	Probability and Statistics.
PLO 2	Demonstrate knowledge and
	understanding of the fundamentals of
	Data Science and Machine Learning as
	well as appreciate the
	societal/philosophical impact of the
	technologies stemming thereof.
PLO 3	Develop a tangible set of skills to mine information from high-dimensional data sets and use them in prediction, both in academic and in industrial setups.
PLO 4	Demonstrate a consolidated technical grounding in mathematical, statistical and computational techniques and use
	them in a problem solving perspective to
	addross both theoretical and practical
	applications.

Learning Outcomes

PLO 5	Acquire proficiency in extracting/interpreting mathematical, statistical and computational information and in communicating such content clearly and coherently
PLO 6	Use previously acquired mathematical, statistical and computational knowledge to explore new, more advanced such content, be it either for addressing novel complex applications or to engage in basic research activities

Program Structure / Structure de la Formation

Licence 1 Semester 1			
UE	Course Name	Credits	Date
LU1MA001	Mathematics 1	9	Sep- Dec 2023
LU1MEPY1	Mechanics-Physics 1	6	Sep- Dec 2023
LU1SXOIP	Integration into the World of Work 1	3	Sep- Dec 2023
LU1MAAD1	Philosophy and Ethics of Artificial Intelligence	6	Sep- Dec 2023
LU1IN001	Computer Science	6	Sep- Dec 2023
	UAE Studies	0	Sep- Dec 2023
LU1LVAD1	Languages	3	Sep- Dec 2023

Licence 1 Semester 2		_	
UE	Course Name	Credits	Date
LU1MA002	Mathematics 2	6	January – May 2024
LU1MA003	Complements in Analysis	9	January – May 2024
	and Linear Algebra		
LU1MAAD2	Introduction to	3	January – May 2024
	Mathematical Logic		
LU1MAAD3	Descriptive Statistics and	12	January – May 2024
	Introduction to R		
LU1SXAR2	Active Science – Project		
	in Descriptive Statistics		
	UAE Studies	0	January – May 2024
LU1LVAD2	Languages	3	January – May 2024

Licence 2 Semester 3			
UE	Course Name	Credits	Date
LU2MA260	Sequences and	6	Sep- Dec 2023

	Series of Functions		
LU2MA216	Topology and	6	Sep- Dec 2023
	Analysis 1		
LU2MA221	Linear and Bilinear	6	Sep- Dec 2023
	Algebra 1		
LU2MA440	Discrete Probability,	12	Sep- Dec 2023
	Combinatorics and		
	Graphs		
	Languages	3	Sep- Dec 2023

Licence 2 Semester 4			
UE	Course Name	Credits	Date
LU2MA241	Introduction to	6	January – May 2024
	Probability models		
LU2MA312	Lebesgue integrals and	9	January – May 2024
	complements in		
	Probability Theory		
LU2MA122	Linear and Bilinear	6	January – May 2024
	Algebra 2		
LU2MA392	Multidimensional Data	9	January – May 2024
	Analysis		
LU1LVAD2	Languages	3	January – May 2024

Licence 3 Semester 5			
UE	Course Name	Credits	Date
LU3MA264	Measure and Integration theory	6	Sep- Dec 2023
LU3MA260	Topology and analysis 2	6	Sep- Dec 2023
LU3MA490	Statistical inference	12	Sep- Dec 2023
LU3MA276	Numerical analysis and optimization	6	Sep- Dec 2023
LU3FLE01	Languages	3	Sep- Dec 2023

Licence 3 Semester 6			
UE	Course Name	Credits	Date
LU3MA391	Advanced Probability	9	January – May 2024
	Theory		
LU3MA310	Functional Analysis	9	January – May 2024
LU3MA180	Data Science and Machine	9	January – May 2024
	Learning		
LU3MAOI1	Integration to the World of	3	January – May 2024
	Work 2		
LU2FLE02	Languages	3	January – May 2024

Course Details – L1

Course Title &	Mathematics for Sciences 1 – MATH 100
Code	
Instructor	Dr Omar El Dakkak- Dr Grace Younes
Date	September- December 2023
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	1
Contact Hours	90 Total Time Commitment: 90
Course	This course constitutes a thorough and rigorous introduction to
Description	univariate and multivariate differential calculus. Students are first
	introduced to Euclidean spaces and their main algebraic and topological
	properties. After this introduction, a rigorous treatment of the limit
	operation is presented, both for real functions of one variable and of
	several variables. Follows a thorough treatment of continuity and
	differentiability, once more for real functions of one and of more than
	one variable. Elements of optimization are then introduced. The course
	ends with an introduction to primitivizing and to the basic theory of
	differential equations. More specifically, separable variables
	differential equations, first-order linear differential equations as well as
	second-order differential equations with constant coefficients will be
	analysed in detail.
Evaluation	100%CC

Course Title &	Mechanics-Physics 1 - PHYS 125
Code	
Instructor	Dr Eliane Bsaibess
Date	September December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	64 Total Time Commitment: 64

Course	This course covers the concepts and theories related to mechanical and
Description	 thermodynamic equilibrium of macroscopic systems at rest or under a uniform linear motion. The course will include the study of four main topics. 1. Dimensions in mechanics and physics, covering the concepts of physical quantities, dimensions, and units. 2. Equilibrium of mechanical systems, introducing the concepts and methods to study the equilibrium of a mechanical system, including Newton's laws, the notion of forces, and the rotational and translational equilibrium. 3. Hydrostatics, presenting the equations utilized for studying the equilibrium in fluids (gases or liquids) and immersed solids. 4. Thermodynamics, introducing the quantities used to describe the state of a thermodynamic system, introducing the concepts of temperature and heat.
Evaluation	100%CC

Course Title &	Integration to the world of work 1 - PHYS 105
Code	
Instructor	Part Time Maria El Hassrouni – Part Time Anita Roberts
Date	September- December 2023
Course Format	weekly class
Credits	3
Level	Undergraduate
Semester offered	1
Contact Hours	30 Total Time Commitment: 30
Course	In this course, students will explore their own self, career aspirations,
Description	and the world around them. They will be armed to harmoniously face a
	professional world that is in continuous evolution. They will reflect on
	their career. The course explores two aspects. The first aspect focuses
	on the individual, through self-assessment and learning skills such as
	writing a CV and presenting oneself. The second aspect focuses on
	global trends and their current and future impact on the individual,
	society and economy. More precisely, students learn how the world of
	work is changing. As a result, they are made aware of the nature of
	competencies that will be relevant in the future and how their newly
	acquired skillsets can be employed to foster a successful career. The
	specific case of mathematicians and physicists will be tackled along the
	course.
Evaluation	100%CC

Course Title &	Philosophy and Ethics of Artificial Intelligence – MATH -113
Instructor	Dr Claude Vishnu Spaak
Date	September-December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	With the growing impact of the digital transformation in the last
Course Description	With the growing impact of the digital transformation in the last decades, our epoch now stands in front of a 4th Industrial Revolution, described by the World Economic Forum as a "fusion of technologies that is blurring the lines between the physical, digital, and biological spheres" (Schwab, 2016). The development of Artificial intelligence (AI) lies at the center of this undergoing process. This introductory course to the philosophy of artificial intelligence offers a look at the main ethical, metaphysical and social problems related to the development of AI. From the ethical perspective, AI can be seen as a formidable technological tool to ameliorate our lives by improving the efficiency of operations and processes which until today relied exclusively on the fallible powers of humans, in such domains as medicine, transportation, education, environmental sustainability, etc. However the risk of infallibility cannot escape AI, if only because it is programmed by humans. Even if one grants that AI is more reliable than human intelligence, how to hold an automated system morally accountable and responsible if it happens to misjudge a situation and makes a mistake? Given that ethics itself is a field of enquiry that contains various competing ethical theories (which can conflict in ethical dilemma), what set of ethical norms should artificially intelligent devices be programmed with? Won't such norms inevitably enter in conflict with other sets of competing norms?
	From the social and legal perspective AI is about to affect more and more the labor market with robots and machine-learning systems starting to replace human workers: will this have an impact on unemployment or can one expect a reshaping of the structure of labor with new types of jobs and labor structures to emerge from this technological revolution? This also brings a question of social justice: what are the necessary conditions for a socially fair redistribution of the economic value produced through AI?
	Lastly, AI poses core metaphysical problems: what is the nature of the intelligence at work in AI? Is it merely a calculative and instrumental set of processes that mimic human intelligence, but which in the end are merely in the continuation of how a simple calculator operates? Is

	AI blind to what it does, and in this sense must we agree that there is no
	intelligence attached to it in the strong sense in which one says that the
	human being is intelligent? Perhaps on the contrary AI urges us to
	rethink in a new way the very meaning of intelligence: are attributes of
	intelligence that we classically ascribe to the human spirit
	(consciousness, awareness, intuition, understanding, reason, etc.)
	something else than biological / evolution based aptitudes by which the
	human species confronts a series of adaptive problems, in a way that is
	not substantially different from what a programmed artificially
	intelligent device does at its own level of complexity?
Evaluation	100%CC

Course Title & Code	Computer Science - CPSC 100
Instructor	Dr Eliane Bsaibess -Dr Lama Tarsissi
Date	September- December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	The Computer science course is divided into two parts.
Description	
	Part 1: Introduction to the programming language Python (multi-
	platform language).
	Master the skills to pavigate online notebooks and work with the
	Master the skins to havigate online hotebooks and work with the
	Spyder interface using Anaconda navigator.
	Explore and grasp the basic notions of data structure like lists and
	arrays.
	Familiarize with practical modulus and their built-in functions.
	Develop logical reasoning abilities through for and while loops, and apply constructive algorithms to solve problems in mathematics, statistics, and image processing.
	Part 2: Introduction to the typesetting scientific text editor LaTex.
	Explore and grasp the basic notions of representing a good report

	Acquire the skills to represent a presentation using Beamer.
	The course concludes with a comprehensive understanding of both
	Python and LaTex in relation to scientific text editing.
Evaluation	100%CC

Course Title &	UAE Studies – GEED 101
Code	
Instructor	Dr Kosmas Pavlopoulos - Dr Kévin Taillandier
Date	September- December 2023
Course Format	weekly class
Credits	0
Level	Undergraduate
Semester offered	1
Contact Hours	30 Total Time Commitment: 30
Course	• Physical Geography courses aim to understand how the Earth's
Description	physical environment of the UAE underlies and is affected by
	human activity over time. A holistic analysis of Earth systems
	and environmental change is attempted. This involves a
	representation of all environments in the UAE, including
	terrestrial, coastal, and marine, with case studies of the UAE's
	natural environment. The course will explore issues and
	challenges related to water resources and the energy transition
	in the context of sustainable development.
	• Human Geography courses examine a range of topics related to
	economic, urban, social, and cultural geography. Students will
	mobilize key geographical skills and materials to describe and
	critically analyze the impacts of globalization on the UAE.
	Through oral presentations and face-to-face interviews, they
	will strengthen both their communication skills and their
	knowledge of where they live.
	History courses intend to explore the rich history of the UAE,
	beginning with the early history of the aera and the people, the cultural
	developments, and the drastic transformations of the territory between
	the 16th century and the 21st century
Evaluation	50% CC-50% CF

Course Title &	Mathematics for Sciences 2 – MATH 114
Code	
Instructor	Dr Grace Younes
Date	January – May 2024
Course Format	weekly class
Credits	6
Level	Undergraduate

Semester offered	2
Contact Hours	60 Total Time Commitment: 60
Course	This course provides an introduction to students in Sciences to Linear
Description	Algebra on Euclidean spaces. The course covers typical topics that are
	presented at such a level: systems of linear equations, matrices, matrix
	algebra, determinants and inverses, linear combinations, linear
	independence, and R ⁿ subspaces. A number somewhat more advanced
	topics are also seen in the course, namely linear transformations,
	isomorphisms, matrix representation of linear maps, eigenvalues and
	eigenvectors, diagonalization, similarity and inner product spaces.
Evaluation	100%CC

Course Title & Code	Complements in Analysis and Linear Algebra -MATH 160
Instructor	Dr Sudarshan Shinde – Dr Gianluca Mola
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	90 Total Time Commitment: 90
Course	The purpose of this course, which, unlike MATH 100 and MATH 200
Description	is program-specific, is to provide a deeper, more rigorous treatment of
	some of the topics seen in MATH 100 and MATH 200, as is suitable
	for mathematicians. The course is divided in two parts: the first part
	provides complements in Analysis and the second parts provides
	complements in Linear Algebra. More precisely, the Analysis part
	starts with a thorough study of convergence of complex and real-valued
	sequences and the Bolzano-Weierstrass Theorem, it follows on with a
	theoretically complete study of limits, continuity and derivability of
	real functions of a real variable, and of sequences defined through a
	recursion. It ends with a rigorous presentation of Riemann integrals.
	The Linear Algebra part (which telescopes the Linear Algebra part of
	MATH 200), starts with a complete, rigorous presentation of the theory
	of vector snaces, exhibiting how not only Euclidean snaces enjoy this
	structure but also suitable spaces of sequences and general functions do
	anion it. In this framework, the theory of linear mans is developed and
	enjoy it. In this name work, the theory of inical maps is developed and,
	once more, it is snown that rather abstract operators (such as
	differentiation) can be considered as linear maps. The course ends with
	a rigorous presentation of the theory of diagonalization of linear maps.
Evaluation	100%CC

Course Title &	Introduction to Mathematical Logic - MATH 130 –
Code	
Instructor	Dr Grace Younes
Date	January – May 2024
Course Format	weekly class
Credits	3
Level	Undergraduate
Semester offered	2
Contact Hours	30 Total Time Commitment: 30
Course	This course provides first an introduction to the basic concepts and
Description	results of mathematical logic and set theory through basic logical
	structures and the concepts of classes and sets, functions, relations, and
	partially ordered classes. In the second part of the course, students are
	introduced to abstract algebra. In particular, basic mathematical
	structures such as groups and rings are introduced and studied.
Evaluation	100%CC

Course Title &	Descriptive Statistics and Introduction to R- MATH 170
Code	
Instructor	Dr Omar El Dakkak – Dr Samuel Feng
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	90 Total Time Commitment: 90
Course	The course is a first hands-on introduction to Data Science. Students
Description	are introduced and made familiar with different types of statistical
	variables (quantitative, qualitative, categorical, etc.), wherefrom
	different types of centrality indices such as means, modes, medians as
	well as dispersion indices such as standard deviations and variances,
	obviously whenever they make sense. Next, various instruments of
	visualization are introduced (different types of charts, histograms, etc.).
	The univariate data analysis ends with a complete presentation of the
	analysis of concentration and the definition of the Gini index. The
	course moves then to the bivariate descriptive statistics topics. In this
	case, the analysis of Association and Dependence are presented (for
	both quantitative and qualitative data). The course ends with some
	notions of time-series Analysis. In general, after each lecture, students
	follow a computer lab. The aim of these practical sessions is twofold:
	on the one hand to teach and train students on one of the most widely
	used statistics packages: R, and on the other hand, to use such a

	platform to conduct analyses on given data sets, applying the notions seen during the lectures.
Evaluation	100%CC

Course Title &	Active Science: Project in Descriptive Statistics - MATH 175
Code	
Instructor	Dr Maxence De Rochechouart
Date	January – May 2024
Course Format	weekly class
Credits	3
Level	Undergraduate
Semester offered	2
Contact Hours	30 Total Time Commitment: 30
Course	This course, whose assessment is exclusively project-based, is strictly
Description	linked to MATH 170 - Descriptive Statistics and Introduction to R. In
	fact, this course will telescope with MATH 170 and will consist
	eminently of Computer Labs dedicated to guiding he students in their
	preparation of the projects. The format of the course is highly non-
	conventional in that it will, in no small measure, consist of collective
	discussions and proposed resolutions of possible problems, difficulties
	and challenges met by students in the preparation of their project
Evaluation	50% CC, 50% CF

Course Title &	UAE Studies - GEED- 101
Code	
Instructor	Dr Kosmas Pavlopoulos – Dr Kévin Taillandier
Date	January – May 2024
Course Format	weekly class
Credits	0
Level	Undergraduate
Semester offered	2
Contact Hours	90 Total Time Commitment: 90
Course	• Physical Geography courses aim to understand how the Earth's
Description	physical environment of the UAE underlies and is affected by human
	activity over time. A holistic analysis of Earth systems and
	environmental change is attempted. This involves a representation of
	all environments in the UAE, including terrestrial, coastal, and marine,
	with case studies of the UAE's natural environment. The course will
	explore issues and challenges related to water resources and the energy
	transition in the context of sustainable development.
	• Human Geography courses examine a range of topics related to
	economic, urban, social, and cultural geography. Students will mobilise
	key geographical skills and materials to describe and critically analyse

	the impacts of globalisation on the UAE. Through oral presentations
	and face-to-face interviews, they will strengthen both their
	communication skills and their knowledge of where they live.
	History courses intend to explore the rich history of the UAE,
	beginning with the early history of the aera and the people, the cultural
	developments, and the drastic transformations of the territory between
	the 16th century and the 21st century
Evaluation	50% CC-50% CF

Course Details – L2

Course Title &	Sequences and Series of Functions – MATH 220
Code	
Instructor	Dr Samuel Feng –Dr Gianluca Mola
Date	September- December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	The course presents students with the essentials of the theory of
Description	numerical series and the series of functions theory. It starts with a
	detailed presentation of the criteria for the convergence of numerical
	series. Then, the theory of function sequences is presented. In
	particular the notions of pointwise and uniform convergence are
	introduced and analyzed together with their relationship with
	introduced and analyzed together with their relationship with
	continuity, differentiability and integrability. Relevant results for the
	analysis of general series of functions are also presented in this context.
	The second half of the course is dedicated to the detailed presentation
	of the theory of (complex-valued) power series and Fourier series. The
	course ends with some relevant applications in Sciences.
Evaluation	100%CC

Course Title &	Topology and Analysis 1 - MATH 226
Code	
Instructor	Dr Safaa Al Sayed
Date	September- December 2023
Course Format	weekly class
Credits	6

Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	The course follows on the contents of MATH 200 and of MATH 160,
Description	introducing students first to the fundamental notions of Topology in
	\mathbb{R}^n then to those of multivariable Analysis. Thus, in the first part of the
	course, students learn about different norms on \mathbb{R}^n and their topological
	equivalence, the notions of open, closed, bounded, compact and
	connected sets as well as the topological definition of continuity. This
	part ends with the study of the fixed-point Theorem. In the second part
	of the course, the general theory of differential (real and vector valued)
	functions on \mathbb{R}^n is presented. In particular, partial and directional
	derivatives, the Jacobian and the differential of a function,
	(continuously) differentiable functions, diffeomorphisms and
	parametric curves are studied in the first place. Next, the finite-
	increments formula is presented, followed by the multivariate Taylor
	formula. The course ends with a study of critical points in the interior
	of the domain of a differentiable map.
Evaluation	100%CC

Course Title &	Linear and Bilinear Algebra 1 - MATH 222
Code	
Instructor	Dr Lama Tarsissi
Date	September- December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	Following on the notions of determinants, eigenvalues, eigenvectors
Description	and on change of basis formulae, all of which are topics seen in L1, this
	course starts by treating eigenspaces and their use in characterizing
	diagonalizable operators, dual spaces and the associated notion of
	linear forms, highlighting its importance in differential calculus and in
	the representation of quadratic forms. The second part of the course
	consists of the study of Euclidean spaces (i.e. non-necessarily
	complete, inner product real vector spaces) in the framework of which
	the orthogonal group, the Gram-Schmidt orthogonalization procedure
	and the QR decomposition are presented. The third part of the course
	presents the general theory of symmetric bilinear forms, leading to the

	computation of the signature of a quadratic form. Finally, the fourth and last part of the course introduces pre-Hilbert complex spaces and Hilbert spaces.
Evaluation	100%CC

Course Title &	Discrete Probability, Combinatorics and Graphs - MATH 250
Lode	Dr Miltlag Dugrintro
Dete	Santambar Novambar 2022
Date Carrier Farmant	September- November 2025
Course Format	
Credits	
Level	Undergraduate
Semester offered	
Contact Hours	120 Total Time Commitment: 120
Course	The aim of this course is to provide students with the main structures of
Description	Discrete Mathematics and the typical tools from Probability Theory
	needed to model the introduction of randomness on these structures. In
	the first part, students are introduced to the main principles of
	enumeration and to basic combinatorial quantities, the progression in
	this part leading to teaching students to solve homogeneous linear
	recursions using formal power series. The second part of the course
	focuses on introducing and familiarizing students with graphs and trees.
	as well as the different structural properties that contribute to their
	as wen as the unreferr structural properties that contribute to then
	characterization. In the third and last part of the course, after
	introducing the fundamentals of Probability Theory (probability spaces,
	conditional probability, random variables, moments) students will study
	some special topics/tools of relevance in the modelling of random
	discrete structures: probability generating functions, enumerative
	probabilities, introduction to random graphs.
Evaluation	100%CC

Course Title &	Introduction to Probability Models - MATH 255
Code	
Instructor	Dr Samuel Feng
Date	January – May 2024
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	2
Contact Hours	60 Total Time Commitment: 60
Course	The course constitutes a non-measure-theoretic introduction to
Description	Stochastic Processes. In the first part of the course, after a brief

	reminder of the main discrete and continuous laws, the theory of
	multivariate distributions is presented, leading to the treatment of
	conditional laws, conditional expectations and independence. In the
	second part of the course, a number of archetypical Stochastic
	processes, widely used in applications, are presented. In particular, the
	course develops a self-contained, introductory, albeit exhaustive,
	treatment of Branching processes, Random Walks, Markov Chains and
	Poisson processes and some of their principal applications
Evaluation	100%CC

Course Title & Code	Lebesgue Integration Theory and Complements in Probability MATH 230
Instructor	Dr Sudarshan Shinde – Dr Samuel Feng
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	90 Total Time Commitment: 90
Course	The aim of this course is twofold: on the one hand, to provide students
Description	with a rigorous treatment of Real Analysis from the measure-theoretic
	point of view and a rigorous treatment of Probability Theory on
	Euclidean spaces. The connections between a measure-theoretic
	concept and its probabilistic counterpart will be constantly underlined
	all along the course, the aim being to put rigour on the intuitive notions
	an along the course, the ann being to put figure on the intuitive horions
	seen in earner and parallel Probability-based courses in L2. with this in
	mind, the course starts with the general definition of a sigma-field and
	of measures moving on to the construction of Lebesgue measure on \mathbb{R}^n .
	Moving from there, the notion of measurable function (random
	variable) is introduces and the Lebesgue integral is constructed
	(references to the probabilistic notions of expectation and moments are
	carefully made). Next, convergence theorems are presented, along with
	celebrated (measure theoretic and probabilistic) inequalities (Cauchy-
	Schwarz Hölder Markov Chebyshev etc.) The final part of the
	source touches on product measures, multiple integrals and Fourier
	course touches on product measures, multiple integrals and Fourier
	transforms, hence on sequences of independent random variables,
	characteristic functions leading the way to the treatment of laws of
	large numbers and the Central Limit Theorem.
Evaluation	100%CC

Course Title &	Linear and Bilinear Algebra 2- MATH 232
Code	
Instructor	Dr Lama Tarsissi – Dr Gianluca Mola
Date	January – May 2024
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	2
Contact Hours	60 Total Time Commitment: 60
Course	Following on the notions of determinants, eigenvalues, eigenvectors
Description	and on change of basis formulae, all of which are topics seen in L1, this
	course starts by treating eigenspaces and their use in characterizing
	diagonalizable operators, dual spaces and the associated notion of
	linear forms, highlighting its importance in differential calculus and in
	the representation of quadratic forms. The second part of the course
	consists of the study of Euclidean spaces (i.e. non-necessarily
	complete, inner product real vector spaces) in the framework of which
	the orthogonal group, the Gram-Schmidt orthogonalization procedure
	and the QR decomposition are presented. The third part of the course
	presents the general theory of symmetric bilinear forms, leading to the
	computation of the signature of a quadratic form. Finally, the fourth
	and last part of the course introduces pre-Hilbert complex spaces and
	Hilbert spaces.
Evaluation	100%CC

Course Title &	Multivariate Data Analysis- MATH 260 –
Code	
Instructor	Dr Tanujit Chakraborty – Part Time Madhurima Panja
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	90Total Time Commitment: 90
Course	The aim of this course is to provide students a general introduction to
Description	statistical methods for multivariate data analysis. The idea is to
	communicate to the students the statistical tools that are necessary to
	extract relevant information from any dataset. This course addresses
	several standard approaches like univariate and multivariate regression
	or principal components analysis. The students are expected to
	understand how these methods work, how to apply them on a new

	dataset and to interpret the outputs of the different algorithms. Students
	have to submit a project in which a practical problem has to be solved
	using the methods studied in the course.
Evaluation	100%CC

Course Details-L3

Course Title &	Measure and Integration Theory - MATH 330
Code	
Instructor	Dr Omar El Dakkak -Dr Sudarshan Shinde
Date	September- December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	The course starts with a more in-depth review of the notions seen in
Description	MATH 230 - Lebesgue Integration Theory and Complements in
	probability Theory. More precisely, the course starts recalling the notion of a sigma-field and furthers the analysis of a Borel sigma-field on a topological space. Next, the notion of measure is recalled leading to the statement and proof of Caratheodory Theorem. From there, the general notion of an integral with respect to a measure is introduced and various convergence theorems recalled. In the final part of the course, signed measures, absolute continuity of a measure with respect
	to another and the Radon-Nikodym Theorem are presented. The course ends with a treatment of uniformly sigma-finite product measures and the Ionescu-Tulcea Theorem.
Evaluation	100%CC

Course Title &	Topology and Analysis 2 - MATH 336
Code	
Instructor	Dr Safaa Al Sayed
Date	September- December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1

Contact Hours	60 Total Time Commitment: 60
Course	This aim of this course is to present some elements of Topology on
Description	metric spaces and some of their main applications in Analysis, namely
	on the theory of differential equations. The course starts with the
	definition of a metric space and of the notions of open, closed and
	dense subset of a metric space. Next, an introduction to Banach space
	(to be developed in detail in MATH 346 - Functional Analysis) is
	provided. Next the theory of compact metric spaces is presented, and
	the notions of completeness and connectedness treated in this level of
	generality. This part of the course ends with a detailed account on the
	local inversion theorem on Banach spaces and the Banach-Caccioppoli
	Theorem. A second part of the course will treat of the problem of the
	existence and unicity of a (maximal) solution of a differential equation
	(the Cauchy-Lipschitz Theorem).
Evaluation	100%CC

Course Title &	Statistical Inference - MATH 350
Code	
Instructor	Dr Tanujit Chakraborty – PT Madhurima Panja
Date	September- December 2023
Course Format	weekly class
Credits	12
Level	Undergraduate
Semester offered	1
Contact Hours	120 Total Time Commitment: 120
Course	The course is a classical advanced course in (parametric) Mathematical
Description	Statistics. The course uses the notions and tools developed in MATH
	230 – Lebesgue Integration Theory and Complements in Probability
	Theory and in MATH 330 – Measure and Integration Theory. It starts
	with a study of the Glivenko-Cantelli Theorem and its connection with
	the general problem of estimation. Next, order statistics are studied (in
	the discrete and absolutely continuous cases) and the laws of well-
	known statistics are derived in the gaussian case. At this stage, the
	general theory of point estimation is presented within which the notions
	of unbiasedness, consistency and optimality are studied. A particular
	attention is given to maximum likelihood estimation. The next topics to
	be treated are confidence intervals and hypothesis testing. The course
	ends with an account on the linear model. In the framework of the
	course, a series of computer labs will be run on the following topics:
	simulations of random variables (by inversion, rejection sampling and
	by the Box-Muller transform) and Monte-Carlo methods in Statistics.
Evaluation	100%CC

Course Title &	Numerical Analysis and Optimization - MATH 338
Code	
Instructor	Dr Grace Younes
Date	September- December 2023
Course Format	weekly class
Credits	6
Level	Undergraduate
Semester offered	1
Contact Hours	60 Total Time Commitment: 60
Course	The course is divided into two parts:
Description	- The first part consists of an introduction to the basic algebraic
	structures of groups and rings. We focus on important classes of rings
	like integral domains, unique factorization domains, and principle
	domains. We also define polynomial rings where the coefficients of the
	polynomials are elements from a given field. We develop results
	concerning the divisibility and irreducibility of polynomials.
	- In the second part, we will develop some of the important concepts of
	number theory including many of those used in computer science. We
	will first introduce the notion of the divisibility of integers will prove
	many important results about modular arithmetic. We will discuss
	prime numbers and introduce the concept of greatest common divisors
	and study the Euclidean algorithm for computing them. We will explain
	how to solve linear congruences, as well as systems of linear
	congruences, which we solve using the famous Chinese remainder
	theorem. We introduce the subject of cryptography which plays an
	essential role in electronic communication. We will show how the ideas
	we develop can be used in cryptographical protocols, introducing
	protocols for sharing keys and for sending signed messages.
Evaluation	100%CC

Course Title &	Advanced Probability Theory - MATH 355
Code	
Instructor	Dr Samuel Feng –Dr Miklos Ruszinko
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	90 Total Time Commitment: 90
Course	The course follows on from the notions acquired in MATH 230 -
Description	Lebesgue Integration Theory and Complements in Probability Theory
	and in MATH 330 – Measure and Integration Theory. It starts by a
	rigorous treatment the laws of large numbers and central limit theorems
	for triangular arrays. After a presentation of the theory of weak

	convergence, the multivariate central limit theorem is examined in
	detail. Next, the general theory of conditional expectation (given a
	sigma-field) is presented with a particular focus on the notion of regular
	conditional probability laws. The last third of the course is devoted to
	the treatment of some well-known stochastic processes: Discrete-time
	martingales and continuous-time Gaussian and stationary processes.
	The course ends with an introduction to Brownian motion
Evaluation	100%CC

Course Title &	Functional Analysis - MATH 346
Code	
Instructor	Dr Safaa Al Sayed
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	90 Total Time Commitment: 90
Course	The course follows on ideally from MATH 330 – Measure and
Description	Integration Theory by developing standard notions of Functional
	Analysis. After recalling some well-known inequalities (Hölder,
	Minkowski, Jensen, etc.) the course properly starts with a rigorous
	treatment of normed vector spaces and Banach spaces. This leads to the
	study of L ^p -spaces and various mathematical properties of such spaces
	(convergence, completeness, compactness, etc). The study of Hilbert
	spaces comes next with a particular attention to infinite-dimensional
	Hilbert spaces. In the last part of the course, Duality theory,
	convolutions and Fourier transforms on \mathbb{R}^n .
Evaluation	100%CC

Course Title &	Data Science and Machine Learning - MATH 370
Code	
Instructor	Dr Tanujit Chakraborty –Part Time Madhurima Panja
Date	January – May 2024
Course Format	weekly class
Credits	9
Level	Undergraduate
Semester offered	2
Contact Hours	120 Total Time Commitment: 120

Course Description	The aim of this course is to provide students a general introduction to data science and machine learning methods. The difference between statistics, data science and machine learning may sometimes feel unclear, because some methods are common to the three disciplines. The main idea is that statistics basically concern the estimation of parameters and their interpretation, whereas data science mainly deals with description and explanation of the data and machine learning with prediction. This course presents classical algorithms of optimization, classification and prediction. Students have to submit a project in which an industrial problem has to be solved using the methods studied in the course.
Evaluation	100%CC

Course Title &	Integration to the World of Work 2 - MATH 301
Code	
Instructor	Part -time Maria El Hassrouni – Part time Anita Roberts
Date	January – May 2024
Course Format	weekly class
Credits	3
Level	Undergraduate
Semester offered	2
Contact Hours	30 Total Time Commitment: 30
Course	In this course, students will explore their own self, career aspirations,
Description	and the world around them. They will be armed to harmoniously face a
	professional world that is in continuous evolution. They will reflect on
	their career. The course explores two aspects. The first aspect focuses
	on the individual, through self-assessment and learning skills such as
	writing a CV and presenting oneself. The second aspect focuses on
	global trends and their current and future impact on the individual,
	society and economy. More precisely, students learn how the world of
	work is changing As a result they are made aware of the nature of
	sometencies that will be relevant in the future and how their newly
	competencies that will be relevant in the future and now their newly
	acquired skillsets can be employed to foster a successful career. The
	specific case of physicists will be tackled along the course.
Evaluation	100%CC

Course II	itle &	Languages – SCEN 101
Code		

Instructor	Bassem Mehouachi
Date	September – December 2023
Course Format	weekly class
Credits	3
Level	Undergraduate
Semester offered	1 -2
Contact Hours	60 Total Time Commitment: 60
Course Description	 This course covers the concepts and theories related to French Language skills, it includes reading, writing, speaking and listening learnings as well as grammar and engaging student in simple discussions on day to day topics. This course introduces the fundamental elements of the French language within a cultural context. Emphasis is on the development of basic listening, repeating, pronunciation, dictation, speaking, reading, and writing skills. Upon completion, students should be able to comprehend and respond with grammatical accuracy to spoken and written French as well as demonstrate cultural awareness. The method used is from the book Atelier A1: textbook and workbook. The level of knowledge the students should reach further to this course's sessions is half way towards A1 Level on the CEFR (French CECR) scale. There are 2 units, each unit will take around 10 to 12 hours to work through. At the end of each unit there are exercises to test the progress of students. These skills are reinforced by videos, songs, sketches, dialogues in situation. We use materials such as the Digital Back, to facilitate the acquisition of these skills.
Evaluation	100%CC

Permanent Academic and Administrative Staff

Head of Department : Dr. Valerie Le Guyon Permanent Faculty :

Dr. Delphine Syvilay Dr. Eliane Bsaibess Dr. Gianluca Mola Dr. Grace Younes Dr. Omar El Dakkak Dr.Lama Tarsissi Dr. Samuel Feng Dr. Safaa Elsayed Dr. Sudarshan Shinde Dr.Tanujit Chakraborty Dr.Miklos Ruszinko

Academic Coordinator: Patricia Chahwane

Useful Contacts

Head of Department Dr.Valerie Le Guyon .. Ext. 9283 valerie.leguyon@sorbonne.ae

Academic coordinator Mrs Patricia Chahwane Ext. 9417 Patricia.chahwane@sorbonne.ae

Student affairs Head of Department Mr Eisa Alraeesi Ext. 9350 <u>eisa.alraeesi@sorbonne.ae</u>

Sports Head of Department Mr Alexandre Blaise Ext. 9356 Head of Department <u>alexandre.blaise@sorbonne.ae</u> Sports office sports@sorbonne.ae +971 (0) 2 656 9356

Other services Female student residence Ext. 9395 Male student residence Ext. 9394 Medical clinic Ext. 9629